(本小题满分12分)
等差数列{}的公差不为零,首项=1,是和的等比中项,
(1)求数列{}的通项公式及前n项和Sn
(2)证明数列为等比数列;
(3)求数列的前n项和
(本小题满分12分)
已知椭圆的两焦点为,为椭圆上一点,且是与的等差中项.
(1)求此椭圆方程;
(2)若点满足,求的面积.
(本小题满分12分)
在△中,角、、所对的边分别为、、,已知.
(1)求的值;
(2)求的值.
(本小题满分12分)
已知函数
(1)求的最小正周期
(2)求的的最大值和最小值;
(3) 求的的单调增区间
已知是抛物线的准线与双曲线的两条渐近线所围成的三角形平面区域内(含边界)的任意一点,则的最大值为 ****
如图,抛物线形拱桥的顶点距水面2米时,测得拱
桥内水面宽为12米,当水面升高1米后,则拱桥内
水面的宽度为 **** _米.