在一张矩形纸片上,画有一个圆(圆心为O)和一个定点F (F在圆外).在圆上任取一点M,将纸片折叠使点M与点F重合,得到折痕CD.设直线CD与直线OM交于点P,则点P的轨迹为
A.圆 B.椭圆 C.双曲线 D.直线
在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为(注:球的体积公式)
A. B.1- C. D.1-
下图给出的是计算的值的一个程序框图,其中判断框内应填
入的条件是
A. B.
C. D.
设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于
A. B. C. D.
方程=1表示焦点在y轴上的椭圆,则m的取值范围是K#s5u
A.-16<m<25 B.-16<m< C.<m<25 D.m>
某产品的广告费用x与销售额y的统计数据如下表
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39[ |
54 |
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元