(本小题满分14分)已知半径为的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于两点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
(本小题满分12分)如图,在底面是直角梯形的四棱锥S-ABCD中,
(1)求四棱锥S-ABCD的体积;
(2)求证:BC;
(3)求SC与底面ABCD所成角的正切值。
(本小题满分12分)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;
(2 )设BD=1,求三棱锥D—ABC的表面积。
(本小题满分12分)已知圆C:,直线:mx-y+1-m=0
(1)判断直线与圆C的位置关系。
(2)若直线与圆C交于不同两点A、B,且=3,求直线的方程。
(本小题满分12分)已知直三棱柱中,,为中点,为中点,侧面为正方形。
(1)证明:平面;
(2)证明:;
(本小题满分12分) 已知直线经过直线与直线的交点,且垂直于直线.
(1)求直线的方程;
(2)求直线与两坐标轴围成的三角形的面积.