在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点.
(1)求实数的取值范围;
(2)设椭圆与轴正半轴,轴正半轴的交点分别为,是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.
已知等差数列的公差大于0,且是方程的两根,数列的前项和为,且
(1)求数列、的通项公式;
(2)设数列的前项和为,试比较的大小,并说明理由.
双曲线上一点到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设是双曲线的左右焦点,是双曲线上的点,若,
求的面积;
(3)过作直线交双曲线于两点,若,是否存在这样的直线,使为矩形?若存在,求出的方程,若不存在,说明理由.
如图,三棱柱中,侧面底面,,且,O为中点.
(1)证明:平面;
(2)求直线与平面所成角的正弦值;
(3)在上是否存在一点,使得平面,
若不存在,说明理由;若存在,确定点的位置.
解关于的不等式:
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求的最大值,并求取得最大值时角A、B的大小.