已知直三棱柱中,△为等腰直角三角形,∠=90°,且=,、、分别为、、的中点.
(1)求证:∥平面;
(2)求证:⊥平面;
(3)求三棱锥的体积.
某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为80,90、90,100、100,110、110,120、120,130,由此得到两个班测试成绩的频率分布直方图:
(1)完成下面2×2列联表,你能有97.5的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
|
成绩小于100分 |
成绩不小于100分 |
合计 |
甲班 |
50 |
||
乙班 |
|
50 |
|
合计 |
100 |
(2)根据所给数据可估计在这次测试中,甲班的平均分是105.8,请你估计乙班的平均分,并计算两班平均分相差几分?
附:
,其中
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.204 |
6.635 |
7.879 |
10.828 |
已知函数.
(1)求函数的单调递增区间;
(2)记△的内角、、所对的边长分别为、、,若,△的面积,,求的值.
在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点.
(1)写出直线的参数方程和曲线的直角坐标方程;
(2)求证直线和曲线相交于两点、,并求的值.
直线与曲线有四个交点,则的取值范围是____________.
平面直角坐标系下直线的方程为,请类比空间直角坐标系下平面的方程为__________________________.