已知F1、F2为双曲线(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求双曲线的离心率.
已知关于的一元二次方程,求使方程有两个大于零的实数根的充要条件
求过点,且与椭圆有相同焦点的椭圆的标准方程.
双曲线的实轴长为2a,F1, F2是它的左、右两个焦点,左支上的弦AB经过点F1,且|AF2|、|AB|、|BF2|成等差数列,则|AB|=
在中,,.若以、为焦点的椭圆经过点,则该椭圆的离心率=
已知点是抛物线上的动点,是抛物线的焦点,若点
(3,2),则的最小值是