(本小题满分12分)
已知函数f()=,当∈(-2,6)时,其值为正,而当∈(-∞,-2)∪(6,+∞)时,其值为负
(I) 求实数的值及函数f()的解析式
(II)设F()= -f()+4+12,问取何值时,方程F()=0有正根?
(本小题满分12分)
已知等比数列的各项均为正数,且
(I) 求的通项公式
(II)令,求数列的前n项和
(本题12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
(本题满分12分)
如图,四边形是直角梯形,∠=90°,∥,=1,=2,又=1,
∠=120°,⊥,直线与直线所成的角为60°.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求三棱锥的体积;
(本题满分12分)
已知双曲线,过能否作一条直线,与双曲线交于两点,且点是线段中点?若能,求出的方程;若不能,请说明理由.
已知直线过点P(5,10),且原点到它的距离为5,则直线的方程为