已知命题是方程的两个实根,不等式对任意实数恒成立;命题不等式有解,若命题“”为假命题,“”为真命题,求实数的取值范围.
(本题满分14分) 某中学为了解学生的睡眠情况与学习效率的关系,从中抽取20名学生作为样本进行调查.调查的数据整理分组如下表示:
睡眠时间(单位:小时) |
||||||
频 数 |
1 |
3 |
|
6 |
4 |
|
频 率 |
|
|
0.20 |
|
|
|
(1)将以上表格补充完整,
(2)在给定的坐标系内画出样本的频率分布直方图;
(3)为了比较睡眠情况与学习效率的关系,现从睡眠时间在与个小时的学生中抽取2人,问能在这两个睡眠时间内各抽到1个学生的概率是多少?
(本题满分14分) 一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
|
轿车A |
轿车B |
轿车C |
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1) 求z的值.
(2) 用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3) 用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4, 8.6, 9.2, 9.6, 8.7, 9.3, 9.0, 8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
(本题满分14分)如图,正方体, ,E为棱的中点.(1) 求证:;
(2) 求证:平面;
(3)求三棱锥的体积.
(本题满分12分)设命题实数满足,其中;命题实数满足,若是的充分不必要条件,求实数的取值范围。
(本题满分12分)小明、小华用4张扑克牌(分别是黑桃2、黑桃4,黑桃5、梅花6)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回,各抽一张.(1)若小明恰好抽到黑桃4, 求小华抽出的牌的牌面数字比4大的概率; (2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之,则小明负,你认为这个游戏是否公平,说明你的理由.