.已知椭圆C:+=1(a>b>0)的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆C的焦点坐标;
(2)若点P是椭圆C上的任意一点,过焦点的直线l与椭圆相交于M,N两点,记直线PM,PN的斜率分别为kPM、kPN,当kPM·kPN=-时,求椭圆的方程.
.已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(Ⅱ)当时,求函数f(x)的单调区间与极值.
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求点B到平面PCD的距离;
(3)求二面角C-AE-D的余弦值
.在正四面体ABCD中,E、F分别是BC、AD中点,则异面直线AE与CF所成角的余弦值是________.
给出下列命题:
① 直线l的方向向量为a=(1,-1,2),直线m的方向向量为b=(2,1,-),则l与m垂直.
②直线l的方向向量为a=(0,1,-1),平面α的法向量为n=(1,-1,-1),则l⊥α.
③平面α、β的法向量分别为n1=(0,1,3),n2=(1,0,2),则α∥β.
④平面α经过三点A(1,0,-1),B(0,1,0),C(-1,2,0),向量n=(1,u,t)是平面α的法向量,则u+t=1.
其中真命题的序号是________.
设α,β,γ为平面,m,n,l为直线,则对于下列条件:
①α⊥β,α∩β=l,m⊥l;
②α∩γ=m,α⊥β,γ⊥β;
③α⊥γ,β⊥γ,m⊥α;
④n⊥α,n⊥β,m⊥α.
其中为m⊥β的充分条件是________(将你认为正确的所有序号都填上).