函数的图象恒过点( ▲ )
A.(0,-2) B. (1,-2) C. (0,-1) D. (1,-1)
三个数:的大小是( ▲ )
A. B.
C. D.
设全集,集合,,则 ( ▲ )
A. B. C. D.
(本题满分10分)
已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“伴随圆”,椭圆的短轴长为2,离心率为.
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若直线与椭圆交于两点,与其“伴随圆”交于两点,当 时,求△面积的最大值.
(本题满分9分)
如图所示的多面体中,已知直角梯形和矩形所在的平面互相垂直,,,,.
(Ⅰ)证明:平面;
(Ⅱ)设二面角的平面角为,求的值;
(Ⅲ)为的中点,在上是否存在一点,使得∥平面?若存在,求出的长;若不存在,请说明理由.
(本题满分8分)
已知经过点的圆与圆相交,它们的公共弦平行于直线.
(Ⅰ)求圆的方程;
(Ⅱ)若动圆经过一定点,且与圆外切,求动圆圆心的轨迹方程.