(本小题满分13分)
已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结交椭圆
于另一点,证明:直线与x轴相交于定点;
(3)在(2)的条件下,过点的直线与椭圆交于、两点,求的取值
范围.
(本小题满分13分)
设数列为等差数列,且a5=14,a7=20。
(I)求数列的通项公式;
(II)若
(本小题满分13分)
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示和的函数关系式(写出函数定义域);
(2)怎样设计能使取得最大值,最大值为多少?
(本小题满分12分)
已知下列三个方程:至少有一个方程有实数根,求实数的取值范围.
(本小题满分12分)
已知,命题函数在上单调递减,命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围.
(本小题满分12分)
在中,角、、的对边分别为、、,且满足.
(1)求角的大小;
(2)当时,求的面积.