(本小题14分)
|
⑴求椭圆的方程;
⑵当直线:与椭圆相交时,求m的取值范围;
⑶设直线:与椭圆交于两点,为坐标原点,若,求的值。
(本小题12分)
如图4:求的算法的
程序框图。⑴标号①处填 。标号②处填 。⑵根据框图用直到型(UNTIL)语句编写程序。
(本小题12分)
⑴焦点在y轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程。
⑵已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程。
(本小题12分)
甲、乙两位学生参加数学竞赛培训,在活动期间,他们参加的5次测试成绩记录如下:
甲 82 82 79 95 87 乙 95 75 80 90 85
⑴用茎叶图表示这两组数据;
⑵若要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由。
(本小题12分)一个盒子中装有张卡片,每张卡片上写有个数字,数字分别是、、、。现从盒子中随机抽取卡片,
⑴若一次抽取张卡片,求张卡片上数字之和大于的概率;
⑵若第一次抽张卡片,放回后再抽取张卡片,求两次抽取中至少一次抽到数字的概率。
(本小题12分)已知命题:函数的图象与轴没有公共点,命题,若命题为真命题,求实数的取值范围