若椭圆=1(a>b>0)与直线在第一象限内有两个不同的交点,求a、b所满足的条件,并画出点P(a,b)的存在区域。
已知抛物线经过椭圆的两个焦点.
(1) 求椭圆的离心率;
(2) 设,又为与不在轴上的两个交点,若的重心在抛物线上,求和的方程。
若直线l:与抛物线交于A、B两点,O点是坐标原点。
(1)当时,求证:OA⊥OB;
(2)若OA⊥OB,求证:直线l恒过定点;并求出这个定点坐标。
椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率,
求椭圆的方程。
点是曲线上任意一点,求点到直线的最小距离。
已知函数与的图像都过点,且在点处有公共切线,求、的表达式。