已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足。数列满足,为数列的前n项和。
(I)求;d和;
(II)若对任意的,不等式恒成立,求实数的取值范围。
如图,某园林绿化单位准备在一直角ABC内的空地上植造一块“绿地△ABD”,规划在△ABD的内接正方形BEFG内种花,其余地方种草,若AB=a,,种草的面积为,种花的面积为,比值称为“规划和谐度”。
(I)试用表示,;
(II)若为定值,BC >AB。当为何值时,“规划和谐度”有最小值?最小值是多少?
已知函数为奇函数。
(I)证明:函数在区间(1,)上是减函数;
(II)解关于x的不等式
已知函数
(I)求函数的最小值和最小正周期;
(II)已知△ABC内角A,B,C的对边分别为a,b,c,且,若向量共线,求a,b的值。
已知数列满足:,。
(I)求证:数列是等比数列(要求指出首项与公比);
(II)求数列的前n项和。
如图放置的边长为1的正方形PABC沿x轴滚动,设顶点P(x,y)的轨迹方程是,则在其两个相邻零点间的图象与x轴所围区域的面积为