已知,椭圆经过点,两个焦点的坐标为
(Ⅰ)求椭圆的方程;(Ⅱ)是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明:直线的斜率为定值,并求出这个定值。
(1)证明直线和平面垂直的判定定理,即已知:如图1,且, 求证:
(2)请用直线和平面垂直的判定定理证明:如果一条直线垂直于两个平行平面中的一个,那么它也垂直于另一个平面,即
已知:如图2, 求证:
已知中心在原点,对称轴为坐标轴的双曲线的一个焦点为
且该双曲线上一点到两个焦点的距离差的绝对值为
(Ⅰ)求双曲线的标准方程.
(Ⅱ)过点且倾斜角为的直线与双曲线交于两点,求线段的长。
如图,在正三棱柱中, 为的中点。
(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值
如图,在四棱锥中,底面为正方形,侧棱底面,,点为的中点。
(Ⅰ)求证:平面;
(Ⅱ)求点到平面的距离。
已知矩形中,,将沿着折成的二面角,则 两点的距离为