选修4-5:不等式选讲
设.
(I)求不等式的解集S:
(II )若关于x不等式有解,求参数t的取值范围.
选修4-4:坐标系与参数方程
以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数,),曲线C的极坐标方程为,
(I )求曲线C的直角坐标方程:
(II)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.
选修4-1:几何证明选讲
如图,AB是圆O的直径,以B为圆心的圆B与圆O的一个交点为P.过点A作直线交圆O于点Q,交圆B于点M、N.
(I )求证:QM=QN;
(II)设圆O的半径为2,圆B的半径为1,当AM=时,求MN的长.
设函数.
(I )讨论f(x)的单调性;
(II) ( i )若证明:当x>6 时,
(ii)若方程f(x)=a有3个不同的实数解,求a的取值范围.
中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2, 2),且
(I )求椭圆E的方程;
(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
如图,在三棱柱ABC-A1BlC1中,CC1丄底面ABC,底面是边长为2的正三角形,M, N分别是棱CC1、AB的中点.
(I)求证:CN//平面 AMB1;
(II)若二面角A-MB1-C为45°,求CC1的长.