抛物线y2=ax(a≠0)的焦点到其准线的距离是( )
A. B. C.|a| D.-
“直线与双曲线有唯一交点”是“直线与双曲线相切”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.不充分不必要条件
给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(1)求椭圆的方程及其“伴随圆”方程;
(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的“伴随圆”相交于M、N两点,求弦MN的长;
(3)点是椭圆的“伴随圆”上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:⊥.
已知定义在R上的函数,为常数,且是函数的一个极值点.
(Ⅰ)求的值;
(Ⅱ)若函数,,求的单调区间;
(Ⅲ) 过点可作曲线的三条切线,求的取值范围
调查某初中1000名学生的肥胖情况,得下表:
|
偏瘦 |
正常 |
肥胖 |
女生(人) |
100 |
173 |
|
男生(人) |
|
177 |
|
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15。
(1)求的值;
(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名?
(3)已知,,肥胖学生中男生不少于女生的概率。
数列的前项和记为,,点在直线上,.
(Ⅰ)当实数为何值时,数列是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设,是数列的前项和,求的值.