正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.
(1)试判断直线与平面的位置关系,并说明理由;
(2)求平面BDC与平面DEF的夹角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.
(1)求的取值范围;
(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
如图,在四棱锥中,底面是矩形,,,AB=2.M为PD的中点.求直线PC与平面ABM所成的角的正弦值;
叙述并证明直线与平面垂直的判定定理.
已知是椭圆的两个焦点,是椭圆上的点,且.
(1)求的周长;
(2)求点的坐标.
以下关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,若||-|| = k,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若= (+), 则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线 =1与椭圆=1有相同的焦点。
其中真命题的序号为______________(填上所有真命题的序号)