已知椭圆,分别为左顶点和上顶点,F为右焦点,过F作轴的垂线交椭圆于点C,且直线与直线OC平行.
(1)求椭圆的离心率;
(2)已知定点M(),为椭圆上的动点,若的重心轨迹经过点,求椭圆的方程.
甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹).
(1)如果甲只射击次,求在这一枪出现空弹的概率;
(2)如果甲共射击次,求在这三枪中出现空弹的概率;
(3)如果在靶上画一个边长为的等边,甲射手用实弹瞄准了三角形区域随机射击,且弹孔都落在三角形内。求弹孔与三个顶点的距离都大于1的概率(忽略弹孔大小).
已知命题,若是的充分不必要条件,求实数的取值范围.
线段是椭圆过的一动弦,且直线与直线交于点,则
底面是正方形的四棱锥A-BCDE中,AE⊥底面BCDE,且AE=CD=,G、H分别是BE、ED的中点,则GH到平面ABD的距离是______
给出下列四种说法:
① 3,3,4,4,5,5,5的众数是5,中位数是4,极差是2;
②频率分布直方图中每一个小长方形的面积等于该组的频率;
③频率分布表中各小组的频数之和等于1
④如果一组数中每一个数减去同一个非零常数,则平均数改变,标准差不变
其中说法正确的序号依次是