设,则使为奇函数且在 上单调递减的的值的个数是( )
A 、1 B、2 C、3 D、4
函数,(a>0且a≠1) 图象必过的定点是
A.(4,1) B.(1,0) C.(0, 1) D.
已知集合则的子集共有
A、2个 B、4个 C、6个 D、8个
已知椭圆,过点作直线与椭圆交于、两点.
(1) 若点平分线段,试求直线的方程;
设与满足(1)中条件的直线平行的直线与椭圆交于、两点,与椭圆交于点,与椭圆交于点,求证://
如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(3)当二面角B-PC-D的大小为时,求PC与底面ABCD所成角的正切值
某工厂对200个电子元件的使用寿命进行检查,按照使用寿命(单位:h),
可以把这批电子元件分成第一组[100,200],第二组(200,300],第三组(300,400],第四组(400,500],第五组(500,600],第六组(600,700].由于工作中不慎将部分数据丢失,现有以下部分图表:
分组 |
[100,200] |
(200,300] |
(300,400] |
(400,500] |
(500,600] |
(600,700] |
频数 |
B |
30 |
E |
F |
20 |
H |
频率 |
C |
D |
0.2 |
0.4 |
G |
I |
(1)求图2中的A及表格中的B,C,D,E,F,G,H,I的值;
(2)求图2中阴影部分的面积;
(3)若电子元件的使用时间超过300h为合格产品,求这批电子元件合格的概率