如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)求直线BC与平面APB所成角的正弦值
(Ⅲ)求点C到平面APB的距离.
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(Ⅰ)求取出的两个球上标号为相同数字的概率;
(Ⅱ)求取出的两个球上标号之积能被3整除的概率.
已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点.若,则
已知F为抛物线C:的焦点,过F且斜率为1的直线交C于A、B两点.设.则与的比值等于 .
设有两个命题,p:关于x的不等式(a>0,且a≠1)的解集是{x|x<0};q:函数的定义域为R。如果为真命题,为假命题,则实数a的取值范围___________。
已知点(2,3)在双曲线C:上,C的焦距为4,则它的离心率为_______