如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。
(Ⅰ)求椭圆和双曲线的标准方程
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1
(Ⅲ)是否存在常数,使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,请说明理由。
设双曲线的两个焦点分别为、,离心率为2.
(I)求双曲线的渐近线方程;
(II)过点能否作出直线,使与双曲线交于、两点,且,若存在,求出直线方程,若不存在,说明理由.
已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,(1)求抛物线的方程;(2)若抛物线与直线无公共点,试在抛物线上求一点,使这点到直线的距离最短。
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。
(Ⅰ)证明:面面;
(Ⅱ)求与所成的角的余弦值;
(Ⅲ)求面与面所成二面角的余弦值。
如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP=BP=AB,PC⊥AC.
(Ⅰ)求证:PC⊥AB;
(Ⅱ)求直线BC与平面APB所成角的正弦值
(Ⅲ)求点C到平面APB的距离.
在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(Ⅰ)求取出的两个球上标号为相同数字的概率;
(Ⅱ)求取出的两个球上标号之积能被3整除的概率.