某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.
(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;
(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低.
在三棱锥中,和是边长为的等边三角形,,分别是的中点.
(1)求证:∥平面;
(2)求证:平面⊥平面;
(3)求三棱锥的体积.
已知圆心在x轴正半轴的圆C经过A(2,0),且与双曲线的渐近线相切,
求圆C的方程
设函数
(1)求的单调递增区间;
(2)当时,求的值域。
M是椭圆上的点,以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q。若为钝角三角形,则椭圆的离心率的取值范围为
已知正四棱柱中,,E为中点,则异面直线与所成角的余弦值为