方程在上的解集是 .
函数的定义域是 .
已知全集,集合,,则 .
(本题满分18分,第1小题6分,第2小题6分,第3小题6分)
对于定义在D上的函数,若同时满足
(Ⅰ)存在闭区间,使得任取,都有是常数);
(Ⅱ)对于D内任意,当时总有,则称为“平底型”函数。
(1)判断是否是“平底型”函数?简要说明理由;
(2)设是(1)中的“平底型”函数,若,对一切恒成立,求实数的范围;
(3)若是“平底型”函数,求和满足的条件,并说明理由。
(本题满分16分,第1小题5分,第2小题6分,第3小题5分)
已知函数,其中为常数,且
(1)若是奇函数,求的取值集合A;
(2)(理)当时,设的反函数为,且函数的图像与的图像关于对称,求的取值集合B;
(文)当时,求的反函数;
(3)(理)对于问题(1)(2)中的A、B,当时,不等式恒成立,求的取值范围。
(文)对于问题(1)中的A,当时,不等式恒成立,求的取值范围。
(本题满分14分,第1小题5分,第2小题9分)
一校办服装厂花费2万元购买某品牌运动装的生产与销售权,根据以往经验,每生产1百套这种品牌运动装的成本为1万元,每生产x(百套)的销售额R(x)(万元)满足:
(1)该服装厂生产750套此种品牌运动装可获得利润多少万元?
(2)该服装厂生产多少套此种品牌运动装利润最大?此时,利润是多少万元?