、已知函数,,是参数, ,,
(1)、若,判别的奇偶性;
若,判别的奇偶性; (6分)
(2)、若,是偶函数,求 (4分)
(3)、请你仿照问题(1)(2)提一个问题(3),使得所提问题或是(1)的推广或是问题(2)的推广,问题(1)或(2)是问题(3)的特例。(不必证明命题)
将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分。 (8分)
、已知和,点满足,为直角坐标原点,
(1)求点的轨迹方程; (6分)
(2)任意一条不过原点的直线与轨迹方程相交于点两点,三条直线,,的斜率分别是、、,,求;(10分)
设函数.
(1)、当时,用函数单调性定义求的单调递减区间(6分)
(2)、若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为和,求恒成立的概率; (8分)
用平方米的材料制成一个有盖的圆锥形容器,如果在制作过程中材料无损耗,且材料的厚度忽略不计,底面半径长为,圆锥母线的长为
(1)、建立与的函数关系式,并写出的取值范围;(6分)
(2)、圆锥的母线与底面所成的角大小为,求所制作的圆锥形容器容积多少立方米(精确到0. 01m3) (6分)
行列式中,第3行第2列的元素的代数余子式记作,的零点属于区间 ( )
(A)(); (B)(); (C)(); (D)();
已知函数f(x) =2x+1,x∈R.规定:给定一个实数x0,赋值x1= f(x0),若x1≤255,则继续赋值x2= f(x1) …,以此类推,若x n-1≤255,则xn= f(xn-1),否则停止赋值,如果得到xn后停止,则称赋值了n次(n∈N *).已知赋值k次后该过程停止,则x0的取值范围是
(A)(2k-9 ,2 k-8] (B)(2 k-8 -1, 2k-9-1](C)(28-k -1, 29-k-1] (D)(27-k -1, 28-k-1]