经过抛物线的焦点,且以为方向向量的直线的方程是 .
若函数与的图像关于直线对称,则 .
不等式的解集是___________.
(满分20分)本题有2小题,第1小题12分,第2小题8分.
已知数列{}和{}满足:对于任何,有,为非零常数),且.
(1)求数列{}和{}的通项公式;
(2)若是与的等差中项,试求的值,并研究:对任意的,是否一定能是数列{}中某两项(不同于)的等差中项,并证明你的结论.
(满分20分)本题有2小题,第1小题12分,第2小题8分.
设为定义域为的函数,对任意,都满足:,,且当时,
(1)请指出在区间上的奇偶性、单调区间、最大(小)值和零点,并运用相关定义证明你关于单调区间的结论;
(2)试证明是周期函数,并求其在区间上的解析式.
(满分16分)本题有2小题,第1小题7分,第2小题9分.
据测算:2011年,某企业如果不搞促销活动,那么某一种产品的销售量只能是1万件;如果搞促销活动,那么该产品销售量(亦即该产品的年产量)万件与年促销费用万元()满足(为常数).已知2011年生产该产品的前期投入需要8万元,每生产1万件该产品需要再投入16万元,企业将每件该产品的销售价格定为每件产品年平均成本的1.5倍(定价不考虑促销成本).
(1)若2011年该产品的销售量不少于2万件,则该产品年促销费用最少是多少?
(2)试将2011年该产品的年利润(万元)表示为年促销费用(万元)的函数,并求2011年的最大利润.