随机地将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,事件“1号球放入1号盒子” 与事件“1号球放入2号盒子”是
A.对立事件 B.互斥但不对立事件 C.不可能事件 D. 以上都不对
某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某学校高一年级有12名女运动员,要从中选出3人调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是
A.①用简单随机抽样法 ②用系统抽样法 B.①用系统抽样法 ②用分层抽样法
C.①用分层抽样法 ②用简单随机抽样法 D.①用分层抽样法 ②用系统抽样法
已知集合,,,则
A. B. C. D.
(本题12分)已知圆C的圆心为C(m,0),(m<3),半径为,圆C与椭圆E: 有一个公共点A(3,1),分别是椭圆的左、右焦点;
(Ⅰ)求圆C的标准方程;
(Ⅱ)若点P的坐标为(4,4),试探究斜率为k的直线与圆C能否相切,若能,求出椭
圆E和直线的方程,若不能,请说明理由。
本题12分)已知从“神七”飞船带回的某种植物种子每粒成功发芽的概率都为,某
植物研究所进行该种子的发芽实验,每次实验种一粒种子, 每次实验结果相互独立. 假定某
次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该
研究所共进行四次实验, 设表示四次实验结束时实验成功的次数与失败的次数之差的绝对
值.
⑴ 求随机变量的分布列及的数学期望;
⑵ 记“不等式的解集是实数集”为事件,求事件发生的概率.
(本题12分) 已知抛物线,顶点为O,动直线与抛物
线交于、两点
(I)求证:是一个与无关的常数;
(II)求满足的点的轨迹方程。