设Sn是等差数列{an}的前n项和,若=,则=( )
A. B. C. D.
在△ABC中,分别是三内角的对边, ,,则此三角形的最小边长为( )
A. B. C. D.
已知数列{}的通项公式是=(),则数列的第5项为( )
A. B. C. D.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个,
使得成立,试求实数的取值范围.
已知函数:.
(1)证明:++2=0对定义域内的所有都成立;
(2)当的定义域为[+,+1]时,求证:的值域为[-3,-2];
(3)若,函数=x2+|(x-) | ,求的最小值
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格p(元/吨)之间的关系式为:p=24200-0.2x2,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(注:利润=收入─成本)