设集合,,则( )
A. B. C. D.
设,则大小关系为( )
A. B. C. D.
由直线与曲线所围图形的面积( )
A. B. C. D.
已知函数满足,且有唯
一实数解。
(1)求的表达式 ;
(2)记,且=,求数列的通项公式。
(3)记 ,数列{}的前 项和为 ,是否存在k∈N*,使得
对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线上。
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn;
(3)设cn=an·bn,求数列{cn}的前n项和Tn.
某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元。
(1)若扣除投资及各种经费,则从第几年开始获取纯利润?
(2)若干年后,外商为开发新项目,按以下方案处理工厂:纯利润总和最大时,以16万美元出售该厂,问多长时间可以出售该工厂?能获利多少?