已知抛物线:,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为.
(1)当时,求椭圆的标准方程;
(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.
如图,三棱柱中,面,=,, 为的中点,为的中点:
(1)求直线与所成的角的余弦值;
(2)在线段上是否存在点,使平面,若存在,求出;若不存在,说明理由。
如图,已知椭圆(a>b>0)的离心率,过顶点A、B的直线与原点的距离为.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
设命题:实数满足,其中,命题:实数满足.
(1)若且为真,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围
在△ABC中,已知,,B=45°, 求A、C及c .
等比数列中,公比,数列的前n项和为,若,求数列 的通项公式。