已知函数,在定义域内有且只有一个零点,存在, 使得不等式成立. 若,是数列的前项和.
(I)求数列的通项公式;
(II)设各项均不为零的数列中,所有满足的正整数的个数称为这个数列的变号数,令(n为正整数),求数列的变号数;
(Ⅲ)设(且),使不等式
恒成立,求正整数的最大值
已知椭圆C:的左焦点为(-1,0),离心率为,过点的直线与椭圆C交于两点.
(Ⅰ)求椭圆C的方程;
(II)设过点F不与坐标轴垂直的直线交椭圆C于A、 B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.
设函数
(Ⅰ)若函数在处取得极小值是,求的值;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若函数在上有且只有一个极值点, 求实数的取值范围.
在空间五面体ABCDE中,四边形ABCD是正方形,,. 点是的中点. 求证:
(I)
(II)
某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],… ,(5.1,5.4].经过数据处理,得到如下频率分布表:
分组 |
频数 |
频率 |
(3.9,4.2] |
3 |
0.06 |
(4.2,4.5] |
6 |
0.12 |
(4.5,4.8] |
25 |
x |
(4.8,5.1] |
y |
z |
(5.1,5.4] |
2 |
0.04 |
合计 |
n |
1.00 |
(I)求频率分布表中未知量n,x,y,z的值;
(II)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.
已知函数 .
(I) 求;
(II)求函数的最小正周期和单调递增区间