对于数列,若满足,则称数列为“0-1数列”.定义变换,将“0-1数列”中原有的每个1都变成0,1,原有的每个0都变成1,0. 例如:1,0,1,则设是“0-1数列”,令
.
(Ⅰ) 若数列: 求数列;
(Ⅱ) 若数列共有10项,则数列中连续两项相等的数对至少有多少对?请说明理由;
(Ⅲ)若为0,1,记数列中连续两项都是0的数对个数为,.求关于的表达式.
在平面直角坐标系中,设点,以线段为直径的圆经过原点.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点的直线与轨迹交于两点,点关于轴的对称点为,试判断直线是否恒过一定点,并证明你的结论.
已知函数..
(I)当时,求曲线在处的切线方程();
(II)求函数的单调区间.
如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.
(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求的分布列和数学期望.
已知函数 的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间及其图象的对称轴方程.