(本小题满分12分)
已知函数是定义在上的奇函数,当,(其中是自然对数的底,)
(1)求的解析式;
(2)设,求证:当时,
(3)是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由。
(本小题满分12分)
已知椭圆的左、右两个焦点分别为F1、F2,离心率为,且抛物线与椭圆C1有公共焦点F2(1,0)。
(1)求椭圆和抛物线的方程;
(2)设A、B为椭圆上的两个动点,,过原点O作直线AB的垂线OD,垂足为D,求点D为轨迹方程。
(本题满分12分)
已知函数的图象经过点A(1,1)、B(2,3)及C(),为数列的前项和。
(1)求及;
(2)若数列满足,求数列的前项和。
(本小题满分12分)
如右图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,圆O的直径为9。
(1)求证:平面ABCD平在ADE;
(2)求二面角D—BC—E的平面角的正切值;
(本小题满分12分)
某品牌的汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示:已知分3期付款的频率为0.2,4S店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元,用表示经销一辆汽车的利润。
付款方工 |
分1期 |
分2期 |
分3期 |
分4期 |
分5期 |
频数 |
40 |
20 |
10 |
(1)求上表中的值;
(2)若以频率作为概率,求事件A:“购买该品牌汽车的3位顾客中,至多有1位采用3期付款”的频率P(A);
(3)求的分布列及数学期望E。
(本小题满分10分)
已知函数为偶函数,其图象上相邻的两个最高点之间的距离为
(1)求的解析式;
(2)若的值。