((本小题满分14分)
已知函数,其中为自然对数的底数.
(Ⅰ)当时,求曲线在处的切线与坐标轴围成的面积;
(Ⅱ)若函数存在一个极大值点和一个极小值点,且极大值与极小值的积为,求的值.
((本小题满分13分)
甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.
(Ⅰ)求选出的4名选手均为男选手的概率.
(Ⅱ)记为选出的4名选手中女选手的人数,求的分布列和期望.
(本小题满分13分)
如图,已知菱形的边长为,,.将菱形沿对角线折起,使,得到三棱锥.
(Ⅰ)若点是棱的中点,求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论.
(本小题满分13分)
已知函数.
(Ⅰ)求函数的定义域;(Ⅱ)若,求的值.
数列满足,,其中,.
①当时,_____;
②若存在正整数,当时总有,则的取值范围是_____.
定义某种运算,的运算原理如图所示.设.则______;在区间上的最小值为______.