已知,且,求的最小值及取得最小值时的值
在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,分别为曲线与轴,轴的交点.
(1)写出曲线的直角坐标方程,并求出的极坐标;
(2)设的中点为,求直线的极坐标方程.
在中,已知是的角平分线,的外接圆交于点,.求证:.
已知函数.
(1)若存在单调增区间,求的取值范围;
(2)是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,求出的取值范围?若不存在,请说明理由。
设是椭圆上的两点,点是线段的中点,
线段的垂直平分线与椭圆相交于两点.
(1)确定的取值范围,并求直线的方程;
(2)试判断是否存在这样的,使得四点在同一个圆上?并说明理由.
在四棱锥,平面,,,,.
(1)求证:平面平面;
(2)当点到平面的距离为时,求二面角的余弦值;
(3)当为何值时,点在平面内的射影恰好是的重心.