已知命题,,则是的( )
A.充分不必要条件 B.必要不充分条件 C充要条件 D既不充分也不必要条件
(本大题14分)已知是函数的一个极值点,其中,
(I)求与的关系式;
(II)求的单调区间;
(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.
(本大题12分)定义在R上的单调函数满足且对任意都有.
(1)求证为奇函数;
(2)若对任意恒成立,求实数k的取值范围.
(本大题12分)
为了迎接2010年10月1日国庆节,某城市为举办的大型庆典活动准备了四种保证安全的方案,列表如下:
方案 |
A |
B |
C |
D |
经费 |
300万元 |
400万元 |
500万元 |
600万元 |
安全系数 |
0.6 |
0.7 |
0.8 |
0.9 |
其中安全系数表示实施此方案能保证安全的系数,每种方案相互独立,每种方案既可独立用,又可以与其它方案合用,合用时,至少有一种方案就能保证整个活动的安全
(I)求A、B两种方案合用,能保证安全的概率;
(II)若总经费在1200万元内(含1200万元),如何组合实施方案可以使安全系数最高?
(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点,PD⊥平面ABCD,且PD=AD=,CD=1
(1)证明:MN∥平面PCD;
(2)证明:MC⊥BD;
(3)求二面角A—PB—D的余弦值。
(本大题12分)设:实数满足,其中,命题实数满足.
(Ⅰ)若且为真,求实数的取值范围;
(Ⅱ)若是的充分不必要条件,求实数的取值范围.