(本小题满分12分)
已知梯形中,∥,,
,、分别是上的点,∥,,是的中点。沿将梯形翻折,使平面⊥平面 (如图) .
(Ⅰ)当时,求证: ;
(Ⅱ)以为顶点的三棱锥的体积记为,求的最大值;
(Ⅲ)当取得最大值时,求钝二面角的余弦值.
(本小题满分12分)
小张参加了清华大学、上海交大、浙江大学三个学校的自主招生考试,各学校是否通过相互独立,其通过的概率分别为、、(允许小张同时通过多个学校)
(1)小张没有通过任何一所学校的概率;
(2)设小张通过的学校个数为ξ,求ξ的分布列和它的数学期望。
(本小题满分12分)
设函数(其中),且的图象在轴右侧的第一个最高点的横坐标为。
(Ⅰ)求的值。
(Ⅱ)如果在区间上的最小值为,求的值。
非空集合G关于运算满足:①对于任意a、bG,都有abG;②存在,使对一切都有,则称G关于运算为和谐集,现有下列命题:
①G={ 为偶数},为复数的乘法,则G为和谐集。
②G={二次三项式},为多项式的加法,则G不是和谐集。
③若为实数的加法,G 且G为和谐集,则G要么为,要么为无限集。
④若为实数的乘法,G 且G为和谐集,则G要么为,要么为无限集。
其中正确的有____________。
的展开式中常数项为 ;(用数字作答)
三棱锥S—ABC中,SA⊥底面ABC,SA=4,AB=3,G为底面三角形ABC的重心,∠ABC=90°,则点G到面SBC的距离等于 ;