((本小题满分12分)
已知椭圆的中心为坐标原点O,焦点在x轴上,椭圆短半轴长为1,动点 在直线上。
(1)求椭圆的标准方程
(2)求以OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
((本小题满分12分)
若图为一简单组合体,其底面ABCD为正方形,PD平面ABCD,EC//PD,且PD=2EC。
(1)求证:BE//平面PDA;
(2)若N为线段PB的中点,求证:EN平面PDB;
(3)若,求平面PBE与平面ABCD所成的二面角的大小。
(本小题满分12分)
为了解我区中学生的体质状况及城乡大学生的体质差异,对银川地区部分大学的学生进行了身高、体重和肺活量的抽样调查。现随机抽取100名学生,测得其身高情况如下表所示
(1)请在频率分布表中的①、②、③位置填上相应的数据,并补全频率分布直方图,再根据频率分布直方图估计众数的值;
(2)若按身高分层抽样,抽取20人参加2011年庆元旦“步步高杯”全民健身运动其中有3名学生参加越野比赛,记这3名学生中“身高低于170Ccm”的人数为,求的分布列及期望。
(本小题满分12分)
已知sin-2cos=0.
(1)求tanx的值;
(2)求的值.
下图表示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3,图3中直线AM与x轴交于点N(n,0),则 m的象就是n,记作
(1)方程的解是x= ;
(2)下列说法中正确的是命题序号是 .(填出所有正确命题的序号)
①; ②是奇函数;
③在定义域上单调递增; ④的图象关于点对称.
设随机变量服从正态分布N(0,1),若P(>1)=p,则P(-1<<0)=__________.