(本题满分12分)
如图,在三棱柱中,侧面,均为正方形,∠,点是棱的中点.
(Ⅰ)求证:⊥平面;
(Ⅱ)求二面角的余弦值.
(本小题满分12分)
在各项均为负数的数列中,已知点在函数的图像上,且.
(1)求证:数列是等比数列,并求出其通项;
(2)若数列的前项和为,且,求.
(本小题满分12分)
已知函数f(x)=
(Ⅰ)求函数f(x)的最小正周期及单调增区间;
(Ⅱ)若函数f(x)的图像向右平移m(m>0)个单位后,得到的图像关于原点对称,求实数m的最小值.
定义在R上的偶函数在[—1,0]上是增函数,给出下列关于的判断; ①是周期函数;②关于直线对称;③是[0,1]上是增函数;④在[1,2]上是减函数;⑤,
其中正确的序号是 。
函数的图像与x轴所围成的封闭图形的面积为 。
.当实数x,y满足约束条件的最大值12,则k的值为 。