(本题满分12分)
设函数
(1)当时,求的最大值;
(2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;
(本题满分12分)
某射手每次射击击中目标的概率是,且各次射击的结果互不影响。
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;
(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。
(本题满分12分)
如图,在三棱柱中,侧面,均为正方形,∠,点是棱的中点.
(Ⅰ)求证:⊥平面;
(Ⅱ)求二面角的余弦值.
(本小题满分12分)
在各项均为负数的数列中,已知点在函数的图像上,且.
(1)求证:数列是等比数列,并求出其通项;
(2)若数列的前项和为,且,求.
(本小题满分12分)
已知函数f(x)=
(Ⅰ)求函数f(x)的最小正周期及单调增区间;
(Ⅱ)若函数f(x)的图像向右平移m(m>0)个单位后,得到的图像关于原点对称,求实数m的最小值.
定义在R上的偶函数在[—1,0]上是增函数,给出下列关于的判断; ①是周期函数;②关于直线对称;③是[0,1]上是增函数;④在[1,2]上是减函数;⑤,
其中正确的序号是 。