(本小题满分12分)
在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且.
(I)求点的轨迹的方程;
(Ⅱ)若、是(I)中上的两点,,过、分别作直线的垂线,垂足分别为、.证明:直线过定点,且为定值.
(本小题满分12分)
某电视台拟举行“团队共享”冲关比赛,其规则如下:比赛共设有“常识关”和“创新关”两关,每个团队共两人,每人各冲一关,“常识关”中有2道不同必答题,“创新关”中有3道不同必答题;如果“常识关”中的2道题都答对,则冲“常识关”成功且该团队获得单项奖励900元,否则无奖励;如果“创新关”中的3道题至少有2道题答对,则冲“创新关”成功且该团队获得单项奖励1800元,否则无奖励.现某团队中甲冲击“常识关”,乙冲击“创新关”,已知甲回答“常识关”中每道题正确的概率都为,乙回答“创新关”中每道题正确的概率都为,且两关之间互不影响,每道题回答正确与否相互独立.
(I)求此冲关团队在这5道必答题中只有2道回答正确且没有获得任何奖励的概率;
(Ⅱ)记此冲关团队获得的奖励总金额为随机变量,求的分布列和数学期望.
(本小题满分12分)
如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且,,,,、分别是线段、的中点.
(I)求证:平面平面;
(Ⅱ)求二面角的大小.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
已知函数.
(I)求函数的最小正周期;
(Ⅱ)当时,函数的最小值为,求实数的值.
已知定义在上的函数.给出下列结论:
①函数的值域为;
②关于的方程有个不相等的实数根;
③当时,函数的图象与轴围成的图形面积为,则;
④存在,使得不等式成立,
其中你认为正确的所有结论的序号为______________________.
已知椭圆的右焦点为,右准线与轴交于点,点在上,若(为坐标原点)的重心恰好在椭圆上,则______________________.