(本小题满分12分)
已知向量a=(1,1),b=(1,0),c满足a·c=0,且|a|=|c|,b·c>0
(1)求向量c;
(2)若映射f:(x,y)→(x′,y′)=xa+yc;
①求映射f下(1,2)的原象;
②若将(x,y)作点的坐标,问是否存在直线使得直线上任一点在映射f的作用下,仍在直线上,若存在求出的方程,若不存在说明理由.
(本小题满分10分)
设函数f(x)=2cos2x+2sinxcosx-1(x∈R)的最大值为M,最小正周期为T.
(1)求M、T;
(2)10个互不相等的正数xi满足f(xi)=M,且xi<10π(i=1,2,…,10),求x1+x2+…+x10的值.
关于函数f(x)=(a是常数且a>0).下列表述正确的是______________.(将你认为正确的答案的序号都填上)
①它的最小值是0 ②它在每一点处都连续 ③它在每一点处都可导 ④它在R上是增函数 ⑤它具有反函数
已知数列{an}满足a1=,an=an-1+(n≥2),则{an}的通项公式为_______________.
.点P(a,3)到直线4x-3y+1=0的距离等于4,且在不等式2x+y-3<0表示的平面区域内,则点P的坐标是______________.
在算式“4×□+1×□=6”的两个□中,分别填入两个自然数,使它们的倒数之和最小,则这两个数应分别为_____________和_____________.