本小题满分12分)
某商店搞促销活动,规则如下:木箱内放有5枚白棋子和5枚黑棋子,顾客从中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,则有奖品,奖励办法如下表:
取出的棋子 |
奖品 |
5枚白棋子 |
价值50元的商品 |
4枚白棋子 |
价值30元的商品 |
3枚白棋子 |
价值10元的商品 |
如果取出的不是上述三种情况,则顾客需用50元购买商品.
(1)求获得价值50元的商品的概率;
(2)求获得奖品的概率;
(3)如果顾客所买商品成本价为10元,假设有10 000人次参加这项促销活动,则商家可以获得的利润大约是多少?(精确到元)
(本小题满分12分)
有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的最大容积V1;
(2)请你判断上述方案是否是最佳方案,若不是,请设计一种新方案,使材料浪费最少,且所得长方体容器的容积V2>V1.
(本小题满分12分)
已知函数f(x)=x3+ax2+ax-2(a∈R),
(1)若函数f(x)在区间(-∞,+∞)上为单调增函数,求实数a的取值范围;
(2)设A(x1,f(x1))、B(x2,f(x2))是函数f(x)的两个极值点,若直线AB的斜率不小于-,求实数a的取值范围.
(本小题满分12分)
已知向量a=(1,1),b=(1,0),c满足a·c=0,且|a|=|c|,b·c>0
(1)求向量c;
(2)若映射f:(x,y)→(x′,y′)=xa+yc;
①求映射f下(1,2)的原象;
②若将(x,y)作点的坐标,问是否存在直线使得直线上任一点在映射f的作用下,仍在直线上,若存在求出的方程,若不存在说明理由.
(本小题满分10分)
设函数f(x)=2cos2x+2sinxcosx-1(x∈R)的最大值为M,最小正周期为T.
(1)求M、T;
(2)10个互不相等的正数xi满足f(xi)=M,且xi<10π(i=1,2,…,10),求x1+x2+…+x10的值.
关于函数f(x)=(a是常数且a>0).下列表述正确的是______________.(将你认为正确的答案的序号都填上)
①它的最小值是0 ②它在每一点处都连续 ③它在每一点处都可导 ④它在R上是增函数 ⑤它具有反函数