((本小题满分12分)
四棱柱ABCD—A1B1C1D1的底面ABCD是正方形,侧棱底面ABCD,E、F分别是C1D1,C1B1的中点,G为CC1上任一点,EC与底面ABCD所成角的正切值是4。
(Ⅰ)确定点G的位置,使平面CEF,并说明理由;
(Ⅱ)求二面角F—CE—C1的余弦值。
(本小题满分12分)
一个袋子中装有黄、黑两色混合在一起的豆子20公斤(两种豆子的大小相同)。现从中随机抽取50粒豆子进行发芽试验,结果如下:发芽的黄、黑两种豆子分别是27粒和16粒,不发芽的黄、黑两种豆子分别是3粒和4粒。
(Ⅰ)估计黄、黑两种豆子分别有多少公斤,以及整个袋子中豆子的发芽率;
(Ⅱ)能不能有90%的把握认为发芽不发芽与豆子的颜色有关?
(Ⅲ)从3粒黄豆和2粒黑豆中任取2粒,求这2粒豆子中黑豆数X的分布列和期望。
(本小题满分12分)
在中,角A、B、C的对边分别为,已知
(Ⅰ)求的值;
(Ⅱ)求的面积
如果直线交于M、N两点,且M、N关于直线对称,则不等式组表示的平面区域的面积是 。
某高三学生希望报名参加某6所高校中的3所学校的自主招生考试,由于其中两所学校的考试时间相同,因此,该学生不能同时报考这两所学校,则该学生不同的报名方法种数 。(用数字作答)
设函数的值是 。