(本小题满分12分)
东莞市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
(本小题满分12分)
在棱长为的正方体中,是线段 中点,.
(Ⅰ) 求证:^;(Ⅱ) 求证:∥平面;
(Ⅲ) 求三棱锥的体积.
(本小题满分14分)
设函数
(Ⅰ)求函数的最大值和最小正周期;
(Ⅱ)设A,B,C为的三个内角,若,且C为锐角,求
已知:如图,PT切⊙O于点T,PA交⊙O于A、B两点且与直径CT交于点D,CD=2,AD=3, BD=6,则PB= .
(二)选做题(14~15题,考生只能从中选做一题)
直角坐标系中,已知曲线的参数方程是
(是参数),若以为极点,轴的
正半轴为极轴,则曲线的极坐标方程可写为
___________________。
运行右边算法流程,若输入3时,输出的值为
____________。