(本题满分14分)
已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M,直线F1M与抛物线C相切。
(Ⅰ)求抛物线C的方程和点M的坐标;
(Ⅱ)过F2作抛物线C的两条互相垂直的弦AB、DE,设弦AB、DE的中点分别为F、N,求证直线FN恒过定点;
(本小题满分14分)
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积.
(Ⅰ)求学生小张选修甲的概率;
(Ⅱ)记“函数 为上的偶函数”为事件,求事件的概率;
(Ⅲ)求的分布列和数学期望。
(本小题满分12分)
如图,在三棱锥中,底面ABC,,
AP=AC, 点,分别在棱上,且BC//平面ADE
(Ⅰ)求证:DE⊥平面;
(Ⅱ)当二面角为直二面角时,求多面体ABCED与PAED的体积比。
(本小题满分12分)
已知函数。
(Ⅰ)求的值域;
(Ⅱ)若(x>0)的图象与直线交点的横坐标由小到大依次是,,…,,求数列的前项的和。
(几何证明选讲)如图所示,AC和AB分别是圆O的
切线,B、C 为切点,且OC = 3,AB = 4,延长OA到
D点,则△ABD的面积是___________.
(二)选做题:在下面二道小题中选做一题,二题都选只计算前一题的得分.
(坐标系与参数方程) 在极坐标系中,点与点关于直线对称, .