在平面直角坐标系中,对其中任何一向量,定义范数,它满足以下性质:⑴,当且仅当为零向量时,不等式取等号;⑵对任意的实数, (注:此处点乘号为普通的乘号);⑶.应用类比的方法,我们可以给出空间直角坐标系下范数的定义,现有空间向量,下面给出的几个表达式中,可能表示向量的范数的是
(把所有正确答案的序号都填上)
⑴⑵ ⑶ ⑷
现有3人从装有编号为1,2,3,4,5的五个小球的暗箱中每人摸出一只球(摸后不放回),则有两人所摸的小球编号是连号,且三人编号不连号的摸法种数为 。
在三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,AB=AC=1,AD=,则三棱锥A-BCD外接球的表面积为 。
若不等式的解集是,那么的值是 。
求曲线所围成图形的面积 。
如果有穷数列(为正整数)满足.即,我们称其为“对称数列“例如,数列,,,,与数列,,,,,都是“对称数列”.设是项数为的“对称数列”,并使得,,,,…,依次为该数列中连续的前项,则数列的前项和可以是
⑴ ⑵ (3)
其中正确命题的个数为 ( )
A.0 B.1 C.2 D.3