若平面向量满足,,,则
A. B.或 C. D.或
已知全集,,,则
A. B. C. D.
((本小题满分14分)
已知函数是函数的极值点。
(Ⅰ)当时,求a的值,讨论函数的单调性;
(Ⅱ)当R时,函数有两个零点,求实数m的取值范围.
(Ⅲ)是否存在这样的直线,同时满足:
①是函数的图象在点处的切线
②与函数 的图象相切于点,
如果存在,求实数b的取值范围;不存在,请说明理由。
((本小题满分14分)
设数列为等比数列,数列满足,,已知,,其中.
(Ⅰ)求数列的首项和公比;
(Ⅱ)当时,求;
(Ⅲ)设为数列的前项和,若对于任意的正整数,都有,求实数的取值范围.
((本小题满分14分)
给定椭圆: ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足.
(Ⅰ)求椭圆及其“伴随圆”的方程
(Ⅱ)试探究y轴上是否存在点(0, ),使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。
((本小题满分14分)
如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形。
(Ⅰ)求证:;
(Ⅱ)求正方形ABCD的边长;
(Ⅲ)求直线与平面所成角的正弦值。