设x,y满足约束条件则的取值范围为( )
A. B. C. D.
设P、Q是两个非空集合,定义集合间的一种运算“⊙”:PQ=如果,则P⊙Q=( )
A B
C [1,2] D (2,+)
(本小题满分14分)
已知向量, 向量, 且, 动点的轨迹为E.
(1)求轨迹E的方程;
(2)证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B, 且(O为坐标原点),并求出该圆的方程;
(本小题满分14分)
如图,过抛物线上一点P(),作两条直线分别交抛物线于A(),B().直线PA与PB的斜率存在且互为相反数,(1)求的值,(2)证明直线AB的斜率是非零常数.
(本小题满分14分)
已知动圆经过点,且与圆内切.
(1)求动圆圆心的轨迹的方程;(2)求轨迹E上任意一点到定点B(1,0)的距离的最小值,并求取得最小值时的点M的坐标.
(本小题满分14分)
(1)掷两颗骰子,其点数之和为4的概率是多少?
(2)甲、乙两人约定上午9点至12点在某地点见面,并约定任何一个人先到之后等另一个人不超过一个小时,一小时之内如对方不来,则离去。如果他们二人在8点到12点之间的任何时刻到达约定地点的概率都是相等的,求他们见到面的概率。