(本小题满分14分)已知各项均不为零的数列{an}的前n项和为Sn,且满足a1=c,
2Sn=an an+1+r.
(1)若r=-6,数列{an}能否成为等差数列?若能,求满足的条件;若不能,请说明理由;
(2)设,,
若r>c>4,求证:对于一切n∈N*,不等式恒成立.
(本小题满分14分)已知函数,,为常数.
(1) 求函数的定义域;
(2) 若时,对于,比较与的大小;
(3) 讨论方程解的个数.
(本题满分14分)给定椭圆>>0,称圆心在原点,半径为的圆是椭圆的“伴随圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(1)求椭圆的方程及其“伴随圆”方程;
(2)若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆的伴随圆相交于M、N两
点,求弦MN的长;
(3)点是椭圆的伴随圆上的一个动点,过点作直线,使得与椭圆都只有一个公共点,求证:⊥.
(本题满分14分)如图,α⊥β,α∩β=l , A∈α, B∈β,点A在直线l 上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求:
(Ⅰ) 直线AB分别与平面α,β所成角的大小;
(Ⅱ)二面角A1-AB-B1的余弦值.
(本小题满分12分)甲有一个装有个红球、个黑球的箱子,乙有一个装有个红球、个黑球的箱子,两人各自从自己的箱子里任取一球,并约定:所取两球同色时甲胜,异色时乙胜(,,,).
(Ⅰ)当,时,求甲获胜的概率;
(Ⅱ)当,时,规定:甲取红球获胜得3分;取黑球获胜得1分;甲负得0分.求甲的得分期望达到最大时的,值;
(Ⅲ)当时,这个游戏规则公平吗?请说明理由.
(本小题满分12分) 已知向量,,.
(1)若求向量,的夹角;
(2)当时,求函数的最大值。